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Abstract

The available information on the random parameters in the definition of a variety of engineering,
physics, biological, and other stochastic problems is usually insufficient for specifying the probability law of
these parameters. Generally, there is a collection of probabilistic models consistent with the available
information, referred to as the class of competing models. The paper examines the output of perfectly
known deterministic systems subjected to partially specified input processes. It is shown that the class Cin of
competing models for input can have many members and that the output properties may depend strongly
on the particular member in Cin used to represent the input. Since the available information on the input is
usually incomplete, it is rarely possible to find uniquely the output properties relevant for a stochastic
problem. Simple linear and non-linear systems with quasi-static and dynamic output are used to illustrate
the flow of information from input to output and assess the sensitivity of some output properties to the
input model. The examples in the paper also show that estimates of a system performance can be inaccurate
if based on input models selected by heuristic considerations.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Consider a linear or non-linear deterministic system with input X and output Y; where XðtÞ and
YðtÞ; tA½t0; t1�; are R

d- and Rd 0
-valued processes, respectively. Suppose that the system is perfectly

known and that the available information on the input is limited to data and physics. Physics may
include some prior information inferred from the analysis of similar stochastic problems. The
objective is to find some properties P� for Y that may or may not characterize the probability law
of this process completely. LetH� denote the class of Rd 0

-valued processes sharing the properties
P�: Denote by Cin the class of competing models for the input, that is, the collection of Rd-valued
stochastic processes consistent with the available information. For example, if the available
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information is limited to the first two moments of X; then Cin is the class of R
d-valued processes in

L2 with prescribed second-moment properties.
LetP�� denote the input properties needed to calculate the required output propertiesP� for Y:

Denote byH�� the class of Rd-valued stochastic processes sharing the properties P��: Generally,
the determination of the properties P� requires information on X beyond P�; that is, the
properties P�� have to provide a more detailed description than the properties P�: For example,
the calculation of the first two moments of the output Y of a non-linear dynamic system subjected
to an input X requires information on X beyond its second-moment properties. If CinDH��; the
information available on the input is sufficient to calculate the properties P� for Y uniquely.
Otherwise, the available information on the input is insufficient for finding the required output
properties P�; so that this information has to be augmented to calculate P�: Let Cin;a denote a
collection of Rd-valued processes such that (1) the members of Cin;a are also in Cin and (2) the
output properties P� can be calculated if the input is represented by any of the members of Cin;a:
Generally, P� depends on the particular member in Cin;a used to represent the input, so that the
required properties of Y cannot be found uniquely. The above procedure of enhancing the available
information on the input is common in applications, for example, seismic ground acceleration
records are viewed as samples of a Gaussian process for dynamic analysis [1, Sections 3.1 and 3.2].
The main objective of the paper is the evaluation of the sensitivity of output properties to the

input models in Cin;a: It is shown that some output properties depend strongly on the particular
member in Cin;a used to model the input. This dependence can have significant practical
implications since any member of Cin;a is a valid input model. Simple linear/non-linear systems
with quasi-static/dynamic outputs are used to illustrate the sensitivity of some output properties
to the particular input model selected from Cin;a:
The paper does not address the problem of selecting the optimal member of Cin;a: A solution of

this model selection problem is offered by the Bayesian decision method in Ref. [2]. The method
accounts for both the available information and the consequence of using an inadequate input
model. The states of nature and the action space of the decision framework in Ref. [2] coincide
with the membersMi; i ¼ 1;y;m; of Cin;a: The utility function uðMi;MjÞ; i; j ¼ 1;y;m; defines
the penalty of representing the input byMi under the assumption that the nature state isMj: The
optimal model minimizes the expected utility

Pm
j¼1 uðMi;MjÞpj; where pj denotes the probability

thatMj is the actual state of nature.

2. Equivalent classes for stochastic processes

Several classes of equivalence are defined for stochastic processes corresponding to various
levels of information on their probability law. Let H be the collection of Rd-valued stochastic
processes XðtÞ; tA½t0; t1�; defined on a probability space. If X is in L2; its mean and correlation
functions, lðtÞ ¼ E½XðtÞ� and rðt; sÞ ¼ E½XðtÞXðsÞT�; exist and are finite. We consider eight classes
of equivalence for Rd-valued stochastic processes:

* The class of processes equivalent in the second-moment sense,

Hsm ¼ fXAH: XAL2 and XBðlðtÞ; rðt; sÞÞg; ð1Þ

consists of all processes in H-L2 with the same mean and correlation functions.
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* The class of processes equivalent in the higher order moment sense,

Hhocm ¼fXAHsm: XALm;mX3; and E½XiðtÞ
k�;

k ¼ 3;y;m; i ¼ 1;y; dg; ð2Þ

is a subset ofHsm including processes in Lm; mX3; whose co-ordinates XiðtÞ; i ¼ 1;y; d; have
the same moments up to order mX3 at each time tA½t0; t1�:

* The class of processes equivalent in the higher order correlation sense,

Hhoc ¼ XAHsm: XALm;mX3; and E
Ym
q¼1

Xkq
ðuqÞ

" #
;

(

kqAf1; 2;y; dg

)
; ð3Þ

is a subset ofHsm including processes in Lm; mX3; that have the same higher order correlation
functions E

Qm
q¼1 Xkq

ðuqÞ
h i

up to order mX3; where the indices kqAf1; 2;y; dg do not have to
be distinct.

* The class of processes equivalent in the second-moment and co-ordinate distribution sense,

Hsm;cd ¼ fXAHsm: same marginal distributions for co-ordinatesg; ð4Þ

is a subset of Hsm including processes whose co-ordinates Xi; i ¼ 1;y; d; have the same
marginal distributions.

* The class of processes equivalent in the second-moment and distribution sense,

Hsm;d ¼ fXAHsm: same marginal distributionsg; ð5Þ

is a subset ofHsm with the same marginal distributions. The classesHsm;cd andHsm;d coincide
for real-valued processes ðd ¼ 1Þ:

* The class of processes with the same finite-dimensional distributions,

Hv ¼ fXAH: same finite-dimensional distributionsg; ð6Þ

are called versions. Versions may or may not have finite moments.

The processes in the above classes of equivalence do not have to be defined on the same
probability space. For example, consider two real-valued processes X and X 0 that are defined on
the probability spaces ðO;F;PÞ and ðO0;F0;P0Þ; respectively. These processes are versions if the
probabilities Pð-n

q¼1 X ðuqÞpxqÞ and P0ð-n
q¼1 X 0ðuqÞpxqÞ coincide for any integer nX1;

uqA½t0; t1�; xqAR; and q ¼ 1;y; n: The processes in the following two classes of equivalence
have to be defined on the same probability space.

* The class of processes defined on a probability space ðO;F;PÞ such that

Hm ¼fX;YAHv: PðoAO: Xðt;oÞ ¼ Yðt;oÞÞ

¼ 1 at each tA½t0; t1�g: ð7Þ

The processes X and Y with the above property are called modifications.
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* The class of processes defined on a probability space ðO;F;PÞ such that

Hi ¼ fX;YAHv: almost all samples of X and Y coincideg: ð8Þ

The processes X and Y with the above property are said to be indistinguishable.
Indistinguishable processes are modifications but the converse is not generally true [3,
Section 3.8].

The sample properties for the stochastic processes in the above classes of equivalence have not
been specified. These properties are needed to characterize fully a stochastic process. For example,
the Brownian motion BðtÞ; tX0; is by definition a real-valued process with increments independent
of the past such that BðtÞ 	 BðsÞBNð0; t 	 sÞ; sot; where Nðm;s2Þ denotes a Gaussian random
variable with mean m and variance s2: This definition yields the finite-dimensional distributions of
B; that is, it specifies B as a member inHv; but does not tell anything about the samples of this
process. It can be shown that there is a modification of B which has continuous samples a.s.
[4, Theorem 26, p. 17]. This modification of B is commonly referred to as the Brownian motion
process, and continues to be denoted by B: We also note that B so defined is a member on Hi

since modifications with right or left continuous samples are indistinguishable [3, Example 3.34,
p. 138].

Example 1. Let BðtÞ; tX0; be a Brownian motion process and let

CðtÞ ¼
XNðtÞ

k¼1

Yk ¼
XN
k¼1

Yk1ðtXTkÞ; tX0; ð9Þ

be a compound Poisson process, where N denotes a homogeneous Poisson process with intensity
l > 0; Yk; k ¼ 1; 2;y; are independent identically distributed real-valued random variables; Tk;
k ¼ 1; 2;y; denote the jump times of N; and T0 ¼ 0: The process C has right continuous samples
by definition. The second-moment properties of the Brownian motion process are E½BðtÞ� ¼ 0 and
E½BðtÞBðsÞ� ¼ t4s; where t4s ¼ minðt; sÞ: If Y1 is in L2 such that E½Y1� ¼ 0 and lE½Y 21 � ¼ 1; then
C has the same second-moment properties as B so that B;CAHsm with d ¼ 1; mðtÞ ¼ 0; and
rðt; sÞ ¼ t4s: Also, the formal derivatives of B and C are the Gaussian and the Poisson white-
noise processes, respectively. These white noise processes are equivalent in the second-moment
sense.

Suppose that Y1 satisfies the above conditions, that is, E½Y1� ¼ 0 and lE½Y 21 � ¼ 1; so that
B;CAHsm: The processes B and C have some other common properties besides their first two
moments. For example, B and C (1) have stationary independent increments so that they are
Markov, (2) are not m.s. differentiable since the correlation function rðt; sÞ is not differentiable at
t ¼ s; and (3) are continuous in probability and mean square. However, there are notable
differences between these processes. The Brownian motion has a.s. continuous samples, while the
samples of C have jumps. The random variable BðtÞ is Gaussian with mean 0 and variance t: The
random variable CðtÞ is not Gaussian, and its distribution depends on l; the distribution of Y1;
and time of t [3, Sections 3.12 and 3.13]. Under the above assumptions on Y1; the sequence of
random variables CðtÞ=

ffiffi
t

p
converges in distribution to Nð0; 1Þ as t-N by the central limit

theorem [5, Theorem 9.7.1, p. 313] since NðtÞ=t converges a.s. to l as t-N [6, Theorem 3.3.2,
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p. 189]. Hence, CðtÞ can be approximated by a Gaussian variable with mean 0 and variance t for
large times. The coefficient of skewness and kurtosis of BðtÞ are g3;BðtÞ ¼ 0 and g4;BðtÞ ¼ 3;
respectively. The corresponding coefficients of CðtÞ are g3;CðtÞ ¼ 0 and

g4;CðtÞ ¼ 3þ
lE½Y 41 �

t
ð10Þ

provided that Y1 has also the properties E½Y 31 � ¼ 0 and E½Y 41 �oN: The above formula for g4;C
results from the expression of the cumulants of filtered Poisson processes [7, Section 3.3] and the
relationship between cumulants and moments [7, Appendix B]. Fig. 1 shows 20 samples of the
Brownian motion B and of a compound Poisson process C with l ¼ 0:05; 0:1; 0:5 and
Y1BNð0; 1=lÞ: The differences between the samples of B and C are significant for small values
of l but decrease with l; an expected result since C with the above properties approaches a
Brownian motion as l-N [7, Example 3.13, p. 85].

Example 2. Consider the processes XT ðtÞ; XDðtÞ; and XPðtÞ; tX0; defined by (1) the formula

XT ðtÞ ¼ F	1
3FðGðtÞÞ; ð11Þ

where F is a distribution, F denotes the distribution of Nð0; 1Þ; and GðtÞ is a stationary Gaussian
process with mean 0, variance 1, and correlation function rðtÞ ¼ E½Gðt þ tÞGðtÞ�; (2) the stochastic
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Fig. 1. Samples of C with (a) l ¼ 0:05; (b) l ¼ 0:1; and (c) l ¼ 0:5; and (d) a sample of B:
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differential equation

dXDðtÞ ¼ 	aXDðtÞ dt þ bðXDðtÞÞ dBðtÞ; ð12Þ

where b is a function satisfying the uniform Lipschitz conditions [3, Section 4.7.1.1] and B denotes
a Brownian motion process; and (3) the summation

XPðtÞ ¼
XNðtÞ

k¼1

Ykhðt 	 TkÞ; ð13Þ

where N is a Poisson process with intensity l > 0; T1;T2;y are the jump times of N; Y1;Y2;y
denote independent identically distributed random variables in L2; and h is a function such that
hðsÞ ¼ 0 for so0: The stationary cumulants of order p ¼ 1; 2;y of XPðtÞ are wp ¼ lE½Y P

1 �=ðpaÞ
[7, Section 3.3].

Let F0 be the lognormal distribution

F0ðxÞ ¼ F
1

s
lnðx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2s

2 	 es2
p

þ es
2=2Þ

 �
; x > 	es

2=2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2s

2 	 es2
p

; ð14Þ

with mean 0 and variance 1, where s > 0 is a scale parameter, and consider the exponential
correlation function

x0ðtÞ ¼ expð	a jtjÞ; a > 0: ð15Þ

If F ¼ F0 in Eq. (11), the translation process XT has the marginal distribution F0: The relationship
between the correlation functions x0 of XT and the corresponding correlation function r0 of G is
[7, Eq. (3.33), p. 52]

x0ðtÞ ¼
1	 es

2 r0ðtÞ

1	 es2
ð16Þ

so that

r0ðtÞ ¼
1

s2
ln ð1þ ðes

2

	 1Þx0ðtÞÞ: ð17Þ

The function r0 is a legitimate correlation function since x0ðtÞX0 for tAR by definition (Eq. (15)),
x0ðtÞ ¼ 0 if and only if r0ðtÞ ¼ 0; x0ðtÞ ¼ 1 if and only if r0ðtÞ ¼ 1; x0ðtÞ is an increasing function
of r0ðtÞ [7, Section 3.1.1], andXn

i; j¼1

aiajr0ðti 	 tjÞX
Xn

i; j¼1

aiaj

 !
min
1pi; jpn

r0ðti 	 tjÞX0

for any integer nX1; times ti; and constants ai; so that r0 is positive definite. The stationary
solution XD of Eq. (12) has the correlation function x0 for any functional form of b: If

bðxÞ2 ¼
	2a
f0ðxÞ

Z x

xl

u f0ðuÞ du; ð18Þ

then the marginal density of the stationary diffusion process XD is f0ðxÞ ¼ dF0ðxÞ=dx; where
xl ¼ inffxAR : F0ðxÞ > 0g [8]. The filtered Poisson process XP in Eq. (13) with E½Y1� ¼ 0;
E½Y 21 � ¼ 2 a=l; and hðsÞ ¼ e	as for sX0 has mean 0, variance 1, and the stationary correlation

ARTICLE IN PRESS

M. Grigoriu / Journal of Sound and Vibration 273 (2004) 837–855842



function x0 by properties of filtered Poisson processes [7, Section 3.3]. Generally, XP cannot match
an arbitrary marginal distribution F0: The parameter l and the properties of Y1 can be tuned such
that, for example, the marginal distribution of XP matches some higher order moments of F0
provided they exist and are finite.
The processes XT ; XD; and XP corresponding to F0 in Eq. (14) and x0 in Eq. (15) have the

following properties:

1. The processes XT and XD are equivalent in the sense of the classHsm;d while XP is equivalent to
XT and XD only in the second-moment sense. Fig. 2 shows histograms of samples of the
translation, diffusion, and filtered Poisson processes calibrated to the target statistics F0 with
s ¼ 1 and x0 with a ¼ 1: The target density f0 is also shown in all plots with continuous lines.
The histograms of XT and XD are similar and match f0 satisfactorily. On the other hand, the
histogram of XP corresponding to a lognormal variable Y1 with mean 0, variance 1, and scale
s ¼ 1:1 is at variance with f0: For this choice of Y1 the moments of order 3 and 4 of XPðtÞ are
close to the corresponding moments of the target distribution F0: Alternative distributions can
be selected for Y1; for example, mixtures of distributions may provide superior approximations
for f0: Generally, the marginal distribution of XPðtÞ cannot match exactly an arbitrary
distribution F0 regardless of the distribution selected for Y1: Let j0 ¼

R
R
eiuxf0ðxÞ dx denote the

target characteristic function. It can be shown that the stationary characteristic function of XP

satisfies the equation 	auj0
PðuÞ þ lðjY1

ðuÞ 	 1ÞjPðuÞ ¼ 0; where jY1
denotes the characteristic

function of Y1 [3, Example 7.34]. If the solution jY1
of this equation with jP ¼ j0 exists and is

a characteristic function, then the stationary marginal distribution of XP is F0:
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Fig. 2. Histograms of the lognormal (a) translation, (b) diffusion, and (c) filtered Poisson processes.
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2. The processes XT ; XD; and XP are m.s. continuous but are not differentiable in the mean square
sense since their correlation function x0 is continuous but is not differentiable at t ¼ 0
[3, Sections 3.9.1 and 3.9.2].

3. The processes XT and XD have a.s. continuous samples, while the samples of XP exhibit jumps.
That XD has continuous samples follows from a property of diffusion processes [3, Section
4.7.1]. Since the mapping in Eq. (11) is continuous for F ¼ F0; the translation process XT has
continuous samples if and only if its Gaussian image G has continuous samples. We have

E½ðGðt þ hÞ 	 GðtÞÞ4� ¼ 12ð1	 r0ðtÞÞ
2 ¼ 12 1	

1

s2
lnð1þ ðes

2

	 1Þe	a jhjÞ
 �2

¼ 12gðhÞ2

for any hAR by properties of Gaussian variables and Eq. (17). Elementary calculations show
that 0pgðhÞpg0ð0þÞ jhj; where g0ð0þÞ ¼ að1	 e	s2Þ=s2: Hence,

E½ðGðt þ hÞ 	 GðtÞÞ4� ¼ 12gðhÞ2p12g0ð0þÞ2 jhj2

so that G has continuous samples a.s. by a Kolmogorov criterion [3, Section 3.3]. The process
XP is continuous in probability since the probability of the event jXPðtÞ 	 XPðsÞj > e converges
to 0 for any e > 0 as jt 	 sj-0 .

4. Since XD is a diffusion process, it is also Markov [3, Section 4.7.1.1]. Also, XP is a Markov
process because it can be viewed as the solution of the stochastic differential equation dXPðtÞ ¼
	a XPðtÞ dt þ dCðtÞ; where C is a compound Poisson process (Eq. (9)). Generally, XT does not
have the Markov property. Since XT is a memoryless transformation of G (Eq. (11)), XT is a
Markov process if and only if G has the Markov property. The necessary and sufficient
condition for a Gaussian process G to be Markov is that r0ðt 	 uÞ ¼ r0ðt 	 sÞr0ðs 	 uÞ holds
for every t > s > u [9, Section 2.5]. This condition is not satisfied at all times; for example,
r0ðt 	 uÞ ¼ 0:4899 and r0ðt 	 sÞr0ðs 	 uÞ ¼ 0:5098 for t ¼ 1; s ¼ 0:5; u ¼ 0; the exponential
correlation in Eq. (15) with a ¼ 1; and the marginal distribution in Eq. (14) with s ¼ 1:

5. The conditional distributions of XD and XT can differ significantly. For example, the joint
distribution of XT at two arbitrary times s and t; sot; is

PðXT ðsÞpx1;XT ðtÞpx2Þ ¼ PðGðsÞpy1;GðtÞpy2Þ ¼ Fðy1; y2; r0ðtÞÞ; ð19Þ

where t ¼ t 	 s denotes the time lag, Fðy1; y2;r0ðtÞÞ is the density of the Gaussian vector
ðGðsÞ;GðtÞÞ and yi ¼ logðxi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2s

2 	 es2
p

þ es
2=2Þ=s: The joint density of ðXT ðsÞ;XT ðtÞÞ results by

differentiating Eq. (19). The ratio of this density to the density of the random variable XT ðsÞ
gives the density of the conditional variable XT ðtÞ j XT ðsÞ: The density of XDðtÞ j XDðsÞ cannot be
found analytically, but can be obtained numerically by, for example, the path integral method.
The method is based on the observation that a diffusion process is locally Gaussian, that is, the
conditional variable XDðt þ DtÞ j XDðtÞ ¼ x; Dt > 0; is approximately Gaussian with mean
ð1	 aDtÞx and variance bðxÞ2Dt for small values of the time step Dt [3, Section 7.3.1.5]. Fig. 3
shows conditional densities for the lognormal translation and diffusion processes considered in
Fig. 2 for a ¼ 1; s ¼ 1; and two time lags, t ¼ 1 and t ¼ 10: Although these processes are
equivalent in the sense of the class Hsm;d ; their conditional densities differ significantly. The
translation process has a shorter memory than the diffusion model in the sense that its
conditional density for t ¼ 10 is nearly equal with the marginal density f0; while the
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corresponding conditional density of the diffusion process for t ¼ 10 differs from f0: The plots
in Fig. 3 also show that XT and XD are not versions since their finite-dimensional distributions
differ. Fig. 4 shows samples of the lognormal diffusion and translation processes considered in
this example. It is not possible to infer from these samples by visual inspection the significant
differences between the conditional densities of XD and XT illustrated in Fig. 3.

The above properties show that the processes XT ; XD; and XP are valid models for a real-valued
stochastic process X with mean 0 and correlation function in Eq. (15). If in addition it is known
that X is a stationary process with the marginal distribution F0 in Eq. (14), the processes XT and
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XD are possible models for X : Some of the properties of the above models for X differ
significantly. And the processes XT ; XD; and XP are just a few members of a relatively large class
of competing models for X :

Example 3. Consider the probability space ðO ¼ ½0; 1�; F ¼ Bð½0; 1�Þ;PðdoÞ ¼ doÞ; where
Bð½0; 1�Þ denotes the Borel s-field on ½0; 1�: Let X ðt;oÞ ¼ 0 for all ðt;oÞ and Y ðt;oÞ ¼ 0 and 1
for tao and t ¼ o; respectively, be two stochastic processes defined on ðO; F;PÞ: These processes
are versions and modifications since Ot ¼ foAO : X ðt;oÞaY ðt;oÞg ¼ ftg and PðftgÞ ¼ 0 for
tA½0; 1�: However, X and Y are not indistinguishable processes since they have different samples
[3, Example 3.35, p. 138]. For example, the maxima of these processes are maxtA½0;1� X ðtÞ ¼ 0 and
maxtA½0;1� Y ðtÞ ¼ 1 a.s.

The differences between the samples of modifications are not relevant when the output is a
weighted integral of past input values, for example, the response of a linear system to a random
input. In this case, the differences between the samples of various input models disappear in the
output, as it will be seen later in Example 5.

3. Response to equivalent models

Suppose that the objective is to find some properties P� defining a class of equivalenceH� for
the output, for example, the second-moment properties P� defining the class of processesH� ¼
Hsm: Generally, we need to know the input beyond the properties P

� to find the properties P�

for the output. Let P�� denote the input properties needed to find the properties P� for the
output. Denote byH�� the class of Rd-valued stochastic processes with the properties P��: The
relationship between P� and P�� depends largely on the features of the system response, for
example, linear/non-linear and quasi-static/dynamic response.
Let Cin denote the collection of R

d-valued processes that are consistent with the available
information on the input, that is, the class of competing models. If CinDH��; the available
information on the input suffices to find the properties P� uniquely. In this case the properties
P� depend only on the properties P�� of the input. For example, the second-moment properties
of the response of a linear system can be calculated from the second-moment properties of
the input. The particular member in Cin used to represent the input is irrelevant. However,
properties of the output beyondP� may depend on the member in Cin used to represent the input.
If Cin*H��; the available information on the input is insufficient to calculate the output
properties P�: The properties of the members in Cin need to be enhanced to characterize the
output at the required level. Let Cin;a be a collection of processes satisfying two conditions. The
processes in Cin;a are also members of Cin and their definition provides adequate information for
calculating the properties P� for Y: Generally, the properties P� depend on the particular
member in Cin;a used to represent the input, so that it is not possible to find these properties
uniquely. It is necessary to represent the input X by a single member in Cin;a to find P

� uniquely.
As previously stated, an optimal model for X can be extracted from Cin;a by, for example, the
Bayesian decision method in Ref. [4].
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3.1. Linear systems

The quasi-static and dynamic system responses are examined separately since their dependence
on input differs in an essential way. A quasi-static response is a memoryless linear mapping of
input. On the other hand, a dynamic response YðtÞ at an arbitrary time t depends on the entire
input history fXðsÞ; sptg and the initial value of Y:

3.1.1. Quasi-static response

Let YðtÞ ¼ aXðtÞ be the system response or output, where a denotes a deterministic matrix
depending on the system properties.
If the second-moment properties of Y are required, it is sufficient to describeX as a member of the

class of equivalenceHsm: In this case, the required output properties P
� and the input properties

P�� needed to delivered the output characterization coincide, and consists of the second-moment
properties of these processes. If the information on X is increased so that it becomes a member of the
classes of equivalence Hhocm or Hsm;cd ; d > 1; then Y cannot be characterized beyond its second-
moment properties. The additional information on the input cannot be transferred to the output.
For example, let d ¼ 2; d 0 ¼ 1; and Y ðtÞ ¼ X1ðtÞ þ X2ðtÞ: The third moment of Y ðtÞ cannot be
calculated if XAHhocm because the moments E½X1ðtÞ

2X2ðtÞ� and E½X1ðtÞX2ðtÞ
2� are not known.

Hence, information on the input beyond the defining properties of the classesHhocm andHsm;cd is
needed to calculate the properties of Y corresponding to these classes.
If X is a member ofHhoc;Hsm;d ;Hv;Hm; orHi; the output Y can be characterized at the same

level as the input, that is, the propertiesP� andP�� coincide. For example, the finite-dimensional
distributions for Y can be obtained from the corresponding family of distributions for X:

3.1.2. Dynamic response

If X is in Hsm; the second-moment properties of the output Y can be obtained by classical
methods of linear random vibration [3, Section 7.2.1.2]. Hence, it is sufficient to specify the second-
moment properties of the input to calculate the same output properties. Adding information on X
so that it becomes a member of Hhocm; Hsm;cd ; or Hsm;d does not allow the determination of
statistics of Y beyond its first two moments. For example, let Y ðtÞ ¼

R t

t0
hðt; sÞ X ðsÞ ds be the

output of a system with d ¼ d 0 ¼ 1; the Green function hð� ; �Þ; and initial value Y ðt0Þ ¼ 0: The
distribution of the random variable Y ðtÞ depends on the entire history of X in the time interval
½t0; t�; so that it cannot be calculated if X is a member ofHsm;cd orHsm;d : It is necessary to describe
X in much more detail to find the marginal distribution of Y ; that is, the properties P�� must
provide a much more refined characterization for X than the required properties P� for Y :
If X is a member of Hhoc; Hv; Hm; and Hi; the input–output mapping preserves the

information on the input, that is, it delivers properties P� for Y compatible with these classes of
equivalence. For example, higher order correlations of the output Y ðtÞ ¼

R t

t0
hðt; sÞ X ðsÞ ds

considered above can be obtained from the corresponding correlations of the input, which are
available for XAHhoc:

Example 4. Let Y ðtÞ; tX0; be the solution of the stochastic differential equation

dY ðtÞ ¼ 	bY ðtÞ dt þ
ffiffiffiffiffiffiffi
2 b

p
dX ðtÞ; tX0; ð20Þ
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with the initial condition Y ð0Þ ¼ 0; where b > 0 is a constant. It is assumed that X is in L2 and we
only know the mean E½X ðtÞ� ¼ 0 and correlation function E½X ðtÞX ðsÞ� ¼ t4s of this process, so
that Cin ¼ Hsm: The second-moment properties of the output Y are

mðtÞ ¼ E½Y ðtÞ� ¼ 0;

rðt; sÞ ¼ E½Y ðtÞY ðsÞ� ¼ ð1	 e	2bðt4sÞÞ e	b jt	sj; ð21Þ

by classical methods of linear random vibration [3, Section 7.2.1.2]. Hence, the first two moments
of Y can be calculated from the corresponding input moments so that P�� ¼ P�:

Suppose now that (1) higher order moments and other properties of the solution Y of Eq. (20)
are required and (2) the available information on the input X consists as above of its first two
moments, that is, Cin ¼ Hsm: This information is insufficient for finding the required output
properties. For a solution we need to represent X by members in Cin;a: Let B be a Brownian
motion process and C a compound Poisson process (Eq. (9)) such that Y1AL2; E½Y1� ¼ 0; and
lE½Y 21 � ¼ 1: These processes have the specified input second-moment properties, so that they are
in the class of competing models for X ; that is, B;CACin: Also, B and C are adequately defined to
allow the calculation of the required output properties, that is, B;CACin;a: Let YB and YC denote
the solutions of Eq. (20) for X ¼ B and X ¼ C; respectively. The processes YB and YC are
equivalent in the second-moment sense, that is, they are members of Hsm with the first two
moments in Eq. (21). However, their statistics beyond the second-moment properties differ
significantly. For example, YB is a Gaussian process with continuous samples a.s., while YC is not
Gaussian and its samples have jumps. An alternative form of YC is

YCðtÞ ¼
ffiffiffiffiffiffi
2b

p XNðtÞ

k¼1

Yke
	b ðt	TkÞ; ð22Þ

where Tk; kX1; denote the jump times of C: If Y1 is in Lp; the cumulants of order p of the random
variable YCðtÞ are [7, p. 295]

wpðtÞ ¼
lE½Y p

1 �ð2bÞ
p=2

pb
ð1	 e	pbtÞ ð23Þ

so that the skewness and kurtosis coefficients of YCðtÞ are

g3ðtÞ ¼ 0 and g4ðtÞ ¼ 3þ
bgY1;4

l
1	 e	4bt

ð1	 e	2btÞ2
ð24Þ

for E½Y 31 � ¼ 0; where gY1;4 denotes the kurtosis coefficient of Y1: Since b; l; and gY1;4 are positive,
we have g4ðtÞX3 at all times tX0 so that the distribution of YCðtÞ has a heavier tail than
the distribution of YBðtÞ: The kurtosis coefficient g4ðtÞ approaches the value 3 corresponding
to Gaussian variables as l-N: Fig. 5 shows histograms of YC corresponding to a com-
pound Poisson process C with Y1BNð0; 1=lÞ for three values of l and a histogram of YB: The
histograms are based on 500 samples and correspond to b ¼ 1: The differences between the
marginal distributions of YB and YC are significant for small values of l: These differences
decrease as l increases, consistently with the asymptotic behavior of g4ðtÞ: Fig. 6 shows estimates
of the probabilities Pðmax0ptpt jYBðtÞj > yÞ and Pðmax0ptpt jYCðtÞj > yÞ obtained from 500
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samples of YB and YC for b ¼ 1; t ¼ 100; and three values of l: The upper tail of the
probability Pðmax0ptpt jYCðtÞj > yÞ dominates the upper tail of Pðmax0ptpt jYBðtÞj > yÞ for
small values of l; but these differences decrease as l increases in agreement with results in Fig. 5.
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The probabilities in Fig. 6 can be interpreted as probabilities of failures during a time interval
½0; t�:
The above results show that it is not possible to characterize uniquely the output beyond its first

two moments if the information on the input is limited to its second-moment properties. The
information on the input needs to be augmented to find the required output properties. Since the
information on the input can be enhanced in many ways, the resulting output properties cannot
be obtained uniquely, as demonstrated by the plots in Figs. 5 and 6. The lack of uniqueness of
some properties of Y can have notable practical implications. For example, the probability of
failure Pðmax0ptpt jY ðtÞj > yÞ can be severely underestimated if it is selected arbitrarily to
represent the input by X ¼ B and the actual input is X ¼ C:

Example 5. Consider the probability space in Example 3 and the input processes X1ðtÞ and
X2ðt;oÞ ¼ X1ðt;oÞ for tao and X2ðt;oÞ ¼ X1ðt;oÞ þ 1 for t ¼ o: The processes X1 and X2 are
modifications but are not indistinguishable. Consider a linear system with transfer function hð� ; �Þ
such that hðt; sÞ ¼ 0 for s > t: The responses of this system to the inputs X1 and X2 are

Y1ðt;oÞ ¼
Z t

0

hðt; sÞX1ðs;oÞ ds;

Y2ðt;oÞ ¼
Z t

0

hðt; sÞ½X1ðs;oÞ þ 1ðs ¼ oÞ� ds ¼ Y1ðt;oÞ ð25Þ

for zero initial condition, respectively. The last equality holds since the Lebesgue measure of the
set fog is zero. The output processes Y1 and Y2 are not only modifications but are also
indistinguishable, showing that some differences in the input sample properties may not be
present in the output samples.

3.2. Non-linear systems

As for linear systems we examine the quasi-static and dynamic responses separately. A quasi-
static response constitutes a memoryless non-linear mapping of input, while a dynamic response
depends on the input history till the current time.

3.2.1. Quasi-static response
If the input X is a member ofHsm; Hhocm; Hsm;cd ; orHsm;d ; it is not possible to calculate even

the second-moment properties of the output Y: For example, let d ¼ 2; d 0 ¼ 1; and Y ðtÞ ¼
ðX1ðtÞ þ X2ðtÞÞ

2 be a quasi-static response. If XAHsm; then E½Y ðtÞ2� cannot be calculated since it
involves moments of XðtÞ of order larger than 2. Also, E½Y ðtÞ2� cannot be found if XAHhocm or
XAHsm;cd since the expectations E½X1ðtÞ

pX2ðtÞ
4	p� cannot be calculated for p ¼ 1; 2; 3: If

XAHsm;d ; it is possible to find all marginal properties of the stochastic process Y ; but the
correlation function E½Y ðtÞY ðsÞ� of this process cannot be obtained. Although the defining
properties P�� for X are well beyond its first two moments, it is not possible to find the output
second-moment properties.
On the other hand, properties P� of Y at levels corresponding to the classes of equivalenceHv;

Hm; and Hi can be obtained if the input X is in Hv; Hm; and Hi; respectively. Also, if X is a
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member ofHhoc and the input–output mapping is polynomial, it is possible to find correlations of
Y up to an order equal to the order pc of the highest known correlation of X less the degree pr of
the input–output polynomial relationship provided that pcXpr: For example, we can find
correlations up to order 3 for the output process Y ðtÞ ¼ ðX1ðtÞ þ X2ðtÞÞ

2 considered above if the
correlations of X up to order 6 are known.
We also note that there may be essential differences between properties of the input and output

processes related by memoryless non-linear transformations, as illustrated by the following
example.

Example 6. Let X be a real-valued diffusion process defined by the stochastic differential
equations

dX ðtÞ ¼ aðX ðtÞÞ dt þ bðX ðtÞÞ dBðtÞ; tX0; ð26Þ

where B is a Brownian motion. It is assumed that the functions a; b satisfy the uniform Lipschitz
condition, so that the solution X of Eq. (26) exists and is unique [3, Section 4.7.1.1]. Let Y ðtÞ ¼
gðX ðtÞÞ be an output process, where g : R-R has a continuous second order derivative. It #o’s
formula [3, Section 4.6.1] applied to the mapping X ðtÞ/Y ðtÞ ¼ gðX ðtÞÞ yields

dY ðtÞ ¼ g0ðX ðtÞÞaðX ðtÞÞ þ 1
2

g00ðX ðtÞÞbðX ðtÞÞ2
� �

dt þ g0ðX ðtÞÞbðX ðtÞÞ dBðtÞ: ð27Þ

If g has an inverse g	1; then Y is a diffusion process since X ðtÞ in the above equation can be
replaced by g	1ðY ðtÞÞ: Otherwise, Y is not a diffusion process showing that the input properties
can be altered in a fundamental way when mapped into an output.

3.2.2. Dynamic response

In contrast to linear systems, second-moment properties of the output Y of a non-linear system
cannot be obtained from the first two moments of the input X to the system. Additional
information on X at the level required by the classes of equivalenceHhocm;Hhoc; Hsm;cd ; orHsm;d

is still insufficient for finding the second-moment properties of Y: Generally, the probability law
of the input has to be specified completely to find even the second-moment properties of Y:
Methods of non-linear random vibration can be used to calculate properties of Y from properties
of X [3, Section 7.3].

Example 7. Consider the input-output relationship

dY ðtÞ ¼
s
4
ðY ðtÞ 	 mÞ	1=2 dt þ ðY ðtÞ 	 mÞ3=4 dX ðtÞ; ð28Þ

where s > 0; m are some constants and the input X ¼ B is a Brownian motion process. The input
has finite moments of any order at any time tX0: The stationary density,

f ð yÞ ¼
s
2p

� �1=2
ðy 	 mÞ	3=2 exp

s
2ð y 	 mÞ

 �
; y > m; ð29Þ

of the real-valued diffusion process in Eq. (28) results form the Fokker–Planck equation for Y

[3, Example 7.41, p. 493], is referred to as the L!evy density, and has no moments [7, Section 2.2.6].
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This example shows that the dynamic response of some non-linear systems can differ in a
fundamental way from the input to this system, as for the case of quasi-static non-linear response
(Example 6).

Example 8. Let Y be defined by the stochastic differential equation

dY ðtÞ ¼ bY ðtÞ dt þ Y ðtÞ dX ðtÞ; tX0; ð30Þ

where b ¼ aþ s2=2; a; s are some constants, and the input X is known as a member of Cin ¼ Hsm

with E½X ðtÞ� ¼ 0 and E½X ðtÞX ðsÞ� ¼ s2ðr4sÞ so that ’XðtÞ ¼ dX ðtÞ=dt is a white-noise process with
mean zero and covariance function E½ ’XðtÞ ’XðsÞ� ¼ s2dðt 	 sÞ: This formal interpretation of the
white noise is common in linear random vibration. Suppose that we need to establish a criterion
for the a.s. stability of the trivial stationary solution of Eq. (30). The available information on the
input X is insufficient for solution. We need to consider models for X in Cin;a to be possible to find
the required output properties.
Let sB and C be a scaled Brownian motion and a compound Poisson process such that Y1AL2;

E½Y1� ¼ 0; and lE½Y 21 � ¼ s2 (Eq. (9)). These processes are equal to X in the second-moment, so
that they are members of Cin: They are also members of Cin;a since we can calculate all properties
of Y in Eq. (30) with X ¼ sB and X ¼ C: It can be shown that

YBðtÞ ¼ Y ð0Þ exp aþ s
BðtÞ

t

 �
t

� �
; tX0; ð31Þ

and

YCðtÞ ¼ Y ð0Þ exp bþ
C�ðtÞ

t

 �
t

� �
; tX0; ð32Þ

where C�ðtÞ ¼
PNðtÞ

k¼1 lnð1þ YkÞ provided that 1þ Y1 > 0 a.s. [3, Examples 8.55 and 8.56]. The
long-term behavior of the outputs YB and YC can differ significantly. For example,
limt-N YBðtÞ ¼ 0 a.s. if ao0 since BðtÞ=t converges a.s. to 0 as t-N; that is, the trivial
stationary solution of Eq. (30) with X ¼ sB is asymptotically stable a.s. for ao0: For X ¼ C we
have limt-N YCðtÞ ¼ 0 a.s. if aþ s2=2þ lE½lnð1þ Y1Þ�o0 since C�ðtÞ=t converges a.s. to
lE½lnð1þ Y1Þ� as t-N [3, Examples 8.55 and 8.56]. Hence, limt-N YCðtÞ ¼ 0 a.s. if aoa�ðlÞ ¼
	s2=2	 lE½lnð1þ Y1Þ�:

Fig. 7 shows the dependence of a�ðlÞ on l for s ¼ 1 and Y1 uniformly distributed in ð	a; aÞ
with a ¼ s

ffiffiffiffiffiffiffiffi
3=l

p
and 1þ Y1 > 0 a.s. For these properties of Y1 the processes C and sB are equal

in the second-moment sense. The plot in the figure has been obtained by Monte Carlo simulation.
There is a notable difference between the long-term behavior of the solutions of Eq. (30) driven by
Brownian motion and compound Poisson processes. The trivial stationary solutions of Eq. (30)
with X ¼ sB and X ¼ C are unstable for a > 0 and a > a�ðlÞ > 0; respectively. The figure suggests
that a�ðlÞ approaches 0 as l-N; an expected results since CðtÞ becomes a version of sB as l
increases indefinitely [3, Section 8.7]. However, the stability regions ao0 and aoa�ðlÞ for the
trivial stationary solutions YB and YC ; respectively, do not coincide for loN: The stationary
solutions YB and YC differ in a fundamental way for aAð0; a�ðlÞÞ: For these values of a; the
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stationary solution YB is a stationary process with non-zero mean while YC has the property
limt-N YCðtÞ ¼ 0 a.s.

Example 9. Consider the response of a non-linear oscillator to a stationary input X specified
partially by its marginal distribution and second-moment properties, that is, Cin ¼ Hsm;d : The
system output Y is the solution of

.YðtÞ þ 2zn0 ’YðtÞ þ xðY ðtÞÞ ¼ X ðtÞ; ð33Þ

where 0ozo1; n0 > 0; xðyÞ ¼ n20y for jyjpa; xðyÞ ¼ n20½a þ bð1	 e	b ðjyj	aÞÞ� signðyÞ for jyj > a; and
a; b; n0 > 0 are some constants.

Suppose that the marginal distribution and the correlation functions of X are given by
Eqs. (14) and (15), respectively. Then the translation and diffusion processes XT and XD in
Eqs. (11) and (12) are members of the class Cin of competing models for X : Moreover,
these processes are also in Cin;a since it is possible to calculate any properties of Y from Eq. (33)
with X ¼ XT and X ¼ XD: Let YT and YD denote the output of Eq. (33) to X ¼ XT and X ¼ XD;
respectively. The processes YT and YD are not equal in the second-moment sense since Eq. (33)
is a non-linear differential equation. Numerical results have been obtained for n0 ¼ 10;
z ¼ 0:1; a ¼ 0:04; and b ¼ 0:03: Estimates of the skewness and kurtosis coefficients are
g3 ¼ 3:03 and g4 ¼ 23:24 for YT ; and g3 ¼ 2:29 and g4 ¼ 12 for YD; indicating a marked
difference between the tails of the marginal distributions of YT and YD: This remark is consistent
with Fig. 8 showing histograms of YT and YD as well as estimates of the stationary probabilities
PðYT ðtÞ > yÞ and PðYDðtÞ > yÞ: The histograms and all estimates are based on 1000 output
samples.
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4. Conclusions

The available information on the random parameters in the definition of a stochastic problem is
rarely sufficient for specifying the probability laws of these parameters uniquely. Generally, there
exists a collection of probabilistic models consistent with the available information, referred to as
the class of competing models Cin:
The paper has considered perfectly known deterministic systems subjected to partially specified

input processes. Generally, the information available on the input is insufficient for calculating
some output properties, so that this information needs to be enhanced for solution. Since the
available information can be enhanced in various ways, there may be many processes that are
consistent with the available information on the input and allow the calculation of the required
output properties. The collection of these processes was denoted by Cin;a: It has been shown that
some output properties depend strongly on the particular member in Cin;a used to describe the
input. This dependence can have significant practical implications if, for example, the input is
represented by an arbitrarily selected member of Cin;a; rather than using decision or other methods
for selecting a member of Cin;a that describes the input in an optimal sense.
Examples involving simple linear and non-linear systems have been used to (1) illustrate the

flow of information from input to output and (2) quantify the dependence of some output
properties on the input models in Cin;a: It has been found that for linear systems, some partial
information on the input maps into similar information on the output. This is not the case with
non-linear systems. The calculation of most output properties for these systems requires a detailed
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characterization of the input. Results in the paper suggest to consider a relatively broad class of
competing models for input and select an optimal model for the input from this class based on
rational methods rather than heuristic considerations.
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